create_quality()calculate quality indicators from object with class of canreg, canregs, fbswicd, or fbswicds. The quality indicators for population-based cancer registries (PBCRs) including:

  • fbs: Number of incident cases.

  • inci: Cancer incidence rate.

  • sws: Number of death cases.

  • mort: Mortality rate.

  • mv: Percentage of cases with microscopic verification.

  • mi: Mortality-to-incidence ratio.

  • And other relevant quality metrics for cancer data evaluation.

create_quality(x, ..., decimal = 2, collapse = TRUE)

# S3 method for class 'canreg'
create_quality(x, ..., cancer_type = "big")

# S3 method for class 'canregs'
create_quality(x, ..., cancer_type = "big", collapse = TRUE)

# S3 method for class 'fbswicds'
create_quality(x, ..., decimal = 2, collapse = TRUE)

# S3 method for class 'fbswicd'
create_quality(x, ..., decimal = 2)

Arguments

x

The input data, object with class of 'fbswicd', 'fbswicds', 'canreg', or 'canregs'.

...

One or more variables used for stratification. For example, you can stratify by sex, year, cancer, or just by year. If sex is not passed as a parameter, the output will be the result for the combined gender.

decimal

The number of decimal places to include in the resulting quality indicator values. Defaults to 2.

collapse

Logical value whether output result as quality or qualites.

cancer_type

A character string specifying the classification method used to categorize ICD-10 codes. This determines how ICD-10 codes are classified. Options include "big" (classify ICD-10 codes into 26 cancer categories), "small" (classify ICD-10 codes into 59 cancer categories, more specific categories), "system" (classify ICD-10 codes into organ system), and "gco" (classify ICD-10 code into cancer categories same as classification published by the Global Cancer Observatory). This parameter is only available when the input data is a vector of ICD-10 codes, or object with class of 'canreg' or 'canregs'.

Value

A data frame (if applied to a single registry object, 'canreg' or 'fbswicd') or a list of data frames (if applied to a grouped registry object, 'canregs' or 'fbswicds') with a class of either 'quality' or 'qualities'.

Examples

data("canregs")
fbsws <- count_canreg(canregs, cancer_type = "system")
qua2 <- create_quality(fbsws, year, sex, cancer)
head(qua2)
#> # A tibble: 6 × 15
#>   areacode  year   sex cancer    rks   fbs  inci   sws  mort    mi    mv   dco
#>      <int> <int> <dbl> <chr>   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1   410103  2021     0 201    687356    43  6.26    14  2.04  0.33  69.8  2.33
#> 2   410103  2021     0 202    687356   665 96.8    433 63     0.65  69.8  1.35
#> 3   410103  2021     0 203    687356   534 77.7    288 41.9   0.54  69.7  0.75
#> 4   410103  2021     0 204    687356    41  5.96     7  1.02  0.17  75.6  0   
#> 5   410103  2021     0 205    687356   244 35.5     53  7.71  0.22  83.2  1.64
#> 6   410103  2021     0 206    358941   142 39.6     38 10.6   0.27  86.6  0   
#> # ℹ 3 more variables: ub <dbl>, sub <dbl>, m8000 <dbl>

# Calculate the quality indicators based on object with class of `canreg`
data <- canregs[[1]]
qua <- create_quality(data, year, sex, cancer, cancer_type = "big")
head(qua)
#> # A tibble: 6 × 14
#>    year   sex cancer    rks   fbs  inci   sws  mort    mi    mv   dco    ub
#>   <int> <dbl> <chr>   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1  2021     0 101    687356    38  5.53    13  1.89  0.34  73.7  2.63     0
#> 2  2021     0 102    687356     5  0.73     0  0     0     40    0        0
#> 3  2021     0 103    687356    59  8.58    50  7.27  0.85  74.6  0        0
#> 4  2021     0 104    687356   123 17.9     82 11.9   0.67  71.5  1.63     0
#> 5  2021     0 105    687356   236 34.3    103 15.0   0.44  77.5  0.85     0
#> 6  2021     0 106    687356   128 18.6    101 14.7   0.79  54.7  1.56     0
#> # ℹ 2 more variables: sub <dbl>, m8000 <dbl>

# Calculate the quality indicators based on object with class of `canregs`
qua <- create_quality(canregs, year, sex, cancer, cancer_type = "big")
head(qua)
#> # A tibble: 6 × 15
#>   areacode  year   sex cancer    rks   fbs  inci   sws  mort    mi    mv   dco
#>      <int> <int> <dbl> <chr>   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1   410103  2021     0 101    687356    38  5.53    13  1.89  0.34  73.7  2.63
#> 2   410103  2021     0 102    687356     5  0.73     0  0     0     40    0   
#> 3   410103  2021     0 103    687356    59  8.58    50  7.27  0.85  74.6  0   
#> 4   410103  2021     0 104    687356   123 17.9     82 11.9   0.67  71.5  1.63
#> 5   410103  2021     0 105    687356   236 34.3    103 15.0   0.44  77.5  0.85
#> 6   410103  2021     0 106    687356   128 18.6    101 14.7   0.79  54.7  1.56
#> # ℹ 3 more variables: ub <dbl>, sub <dbl>, m8000 <dbl>

# Calculate the quality indicators based on object with class of `fbswicds`
fbsws <- count_canreg(canregs, cancer_type = "small")
qua <- create_quality(fbsws, year, sex, cancer)
head(qua)
#> # A tibble: 6 × 15
#>   areacode  year   sex cancer    rks   fbs  inci   sws  mort    mi    mv   dco
#>      <int> <int> <dbl> <chr>   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1   410103  2021     0 10     687356    59  8.58    50  7.27  0.85  74.6  0   
#> 2   410103  2021     0 11     687356   123 17.9     82 11.9   0.67  71.5  1.63
#> 3   410103  2021     0 12     687356    13  1.89     4  0.58  0.31  84.6  0   
#> 4   410103  2021     0 13     687356   129 18.8     63  9.17  0.49  77.5  0.78
#> 5   410103  2021     0 14     687356   104 15.1     39  5.67  0.38  76.9  0.96
#> 6   410103  2021     0 15     687356     3  0.44     0  0     0    100    0   
#> # ℹ 3 more variables: ub <dbl>, sub <dbl>, m8000 <dbl>

# Calculate the quality indicators based on object with class of `fbswicd`
fbsw <- count_canreg(canregs[[1]], cancer_type = "big")
qua <- create_quality(fbsw, year, sex, cancer)
head(qua)
#> # A tibble: 6 × 14
#>    year   sex cancer    rks   fbs  inci   sws  mort    mi    mv   dco    ub
#>   <int> <dbl> <chr>   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1  2021     0 101    687356    38  5.53    13  1.89  0.34  73.7  2.63     0
#> 2  2021     0 102    687356     5  0.73     0  0     0     40    0        0
#> 3  2021     0 103    687356    59  8.58    50  7.27  0.85  74.6  0        0
#> 4  2021     0 104    687356   123 17.9     82 11.9   0.67  71.5  1.63     0
#> 5  2021     0 105    687356   236 34.3    103 15.0   0.44  77.5  0.85     0
#> 6  2021     0 106    687356   128 18.6    101 14.7   0.79  54.7  1.56     0
#> # ℹ 2 more variables: sub <dbl>, m8000 <dbl>